TABLE OF CONTENTS

1 Scope 1.1
2 Definitions and Notation 2.1
2.1 Definitions 2.1
2.2 Notation 2.4
3 Properties of Materials 3.1
3.1 FRP Materials 3.1
3.2 Durability 3.3
3.3 Design Values and Properties 3.4
3.4 Resistance Factors 3.8
 3.4.1 S6-06 Bridge Code 3.8
 3.4.2 S806-02 Building Code 3.8
3.5 Properties of Steel and Concrete 3.9
4 Evaluation of Existing Structures 4.1
4.1 General 4.1
4.2 Existing Capacity and Conditions 4.1
4.3 Structural Integrity 4.2
4.4 Concrete Surface 4.2
4.5 Causes of Deficiencies 4.3
5 Flexural Rehabilitation 5.1
5.1 Strengthening Principle 5.1
5.2 Flexural Analysis 5.2
 5.2.1 Assumptions 5.3
 5.2.2 Failure Modes 5.4
 5.2.3 Initial Strains 5.5
5.3 Equations for Flexure 5.6
 5.3.1 General Case: Rectangular Sections 5.6
 5.3.2 Design Procedure 5.8
 5.3.3 T-Sections Behaviour 5.10
 5.3.4 Special Considerations 5.12
5.4 Anchorage Length for Flexure 5.13
5.5 Serviceability and Fatigue Limit States 5.14
 5.5.1 Cracking 5.14
 5.5.2 Creep and Dimensional Changes 5.15
 5.5.3 Deflections 5.15
 5.5.4 Vibrations 5.16
 5.5.5 Fatigue 5.16
5.6 Examples
5.6.1 Prediction and Validation with Laboratory Results
5.6.2 Design with S6 06 Bridge Code
5.6.3 Design with S806 02 Building Code
5.6.4 Design Example for T-Section

6 Confinement of Compression Elements
6.1 Confinement Principle
6.2 Equations for Compressive Strength
6.2.1 Confinement Pressure
6.2.2 Confined Concrete Strength
6.2.3 Axial Load Capacity
6.2.4 Combination of Axial Load and Flexure
6.2.5 Ductility for Seismic Retrofit
6.3 Limitations
6.3.1 Slenderness
6.3.2 Rectangular Sections
6.3.3 Confinement Limits
6.3.4 FRP Installation
6.3.5 Creep and Fatigue
6.4 Examples
6.4.1 Prediction and Validation with Laboratory Results
6.4.2 Design with S6 06 Bridge Code
6.4.3 Design with S806 02 Building Code
6.4.4 Design for Flexure and Axial Load
6.4.5 Design for Seismic Retrofit

7 Shear Rehabilitation
7.1 Strengthening Principle
7.2 S6-06 Bridge Code: Equations for Shear
7.2.1 Resistance Provided by FRP
7.2.2 Resistance Provided by Steel
7.2.3 Resistance Provided by Prestressing
7.2.4 Resistance Provided by Concrete
7.2.4.1 Simplified Method to Determine β_v and θ
7.2.4.2 General Method to Determine β_v and θ
7.2.5 Design Procedure
7.3 S606-02 Building Code: Equations for Shear
7.3.1 Resistance Provided by FRP
7.3.2 Resistance Provided by Steel
7.3.3 Resistance Provided by Concrete
7.3.4	Design Procedure	7.15
7.3.5	Seismic Retrofit of Columns	7.15
7.4	Installation of FRP Shear Reinforcements	7.16
7.4.1	Concrete Quality	7.16
7.4.2	Anchorage Systems	7.16
7.4.3	Rounding of Corners	7.17
7.4.4	Length for Seismic Retrofit	7.17
7.5	Limitations on FRP Shear Strengthening	7.18
7.5.1	FRP Stirrup Spacing	7.18
7.5.2	Maximum Strengthening	7.18
7.5.3	Minimum Shear Strength	7.19
7.5.4	Combination of Shear Strengthening and Confinement of Columns	7.19
7.5.5	Regions Near Discontinuities	7.19
7.6	Examples	7.19
7.6.1	Prediction and Validation with Laboratory Results	7.20
7.6.1.1	S6-06 Bridge Code	7.21
7.6.1.2	S606-02 Building Code	7.24
7.6.1.3	Nominal Strength	7.25
7.6.2	Beam Design with S6-06 Bridge Code	7.27
7.6.3	Column Design with S806-02 Building Code	7.31

8 Installation of FRP Strengthening Systems | 8.1 |
8.1	General	8.1
8.2	Definitions	8.1
8.3	Approval of FRP Materials	8.2
8.3.1	Descriptive Specifications	8.2
8.3.2	Performance Specifications	8.2
8.3.3	Unsolicited Contractor Proposition	8.2
8.4	Handling and Storage of FRP Materials	8.3
8.4.1	General	8.3
8.4.2	Shipping	8.3
8.4.3	Storage	8.4
8.4.3.1	Storage Conditions	8.4
8.4.3.2	Shelf Life	8.4
8.4.4	Handling	8.4
8.4.4.1	General Handling Hazards	8.4
8.4.4.2	Personnel Safe Handling and Clothing	8.5
8.4.4.3	Workplace Safe Handling	8.5
8.4.5	Clean-up and Waste Disposal	8.5
8.5	Staff Qualification	8.5
8.6	Concrete surface Preparation	8.6
8.6.1 General
8.6.2 Dry Conditions
 8.6.2.1 Repair of Existing Substrate
 8.6.2.2 Surface Preparation for Bond-Critical Applications
 8.6.2.3 Surface Preparation for Contact-Critical Applications
 8.6.2.4 Near Surface Mounted Reinforcement (NSMR)
8.6.3 Particular Conditions
8.7 Installation of FRP Systems
 8.7.1 Preparation and Climatic Conditions
 8.7.1.1 Equipment
 8.7.1.2 Temperature, Humidity and Moisture Concerns
 8.7.1.3 Mixing of Resins
 8.7.2 Hand-Applied Wet Lay-Up Systems
 8.7.2.1 Primer and Putty
 8.7.2.2 Installation of FRP
 8.7.2.3 Alignment of FRP Materials
 8.7.2.4 Multiple Plies and Lap Joints
 8.7.3 Pre-Cured Systems
 8.7.3.1 Surface Bonded Plates
 8.7.3.2 Near Surface Mounted Reinforcements
 8.7.4 Particular Installation Procedures
8.8 Cure
8.9 Protection and Finishing

9 Quality Control and Quality Assurance
 9.1 General
 9.2 Material Qualification and Acceptance
 9.3 Qualification of Contractor Personnel
 9.4 Inspection of Concrete Substrate
 9.5 FRP Material Inspection
 9.5.1 Before Construction
 9.5.2 During Construction
 9.5.3 At Completion of the Project
 9.5.3.1 Delaminations
 9.5.3.2 Cure of Systems
 9.5.3.3 Adhesion
 9.5.3.4 Laminate Thickness
 9.5.3.5 Material Properties
 9.6 Testing
 9.6.1 Qualification Testing
 9.6.2 Field Testing
Table of Contents

10 **References**
10.1 Codes and Standards
10.2 Scientific Published Papers
10.3 Monographs and Other References

Appendix A
Alternate Design Method for Seismic Upgrade of Concrete Columns